1 20 50 150 500
欢迎来到莱福软件站,找素材,搜软件,就上莱福软件站!
当前位置 >首页 >软件下载 >电脑软件 >编程开发 >源码相关

递归下降语法分析器

软件信息
  • 分类:源码相关
  • 大小:34KB
  • 语言: 中文
  • 环境: WinAll, WinXP
  • 更新:2024-11-13
  • 评级:
  • 系统: Windows Linux Mac Ubuntu
  • 软件类别: 国产软件 / 免费软件 / 源码相关
  • 插件情况:

用java语言编写的递归下降语法分析器,是一种适合手写语法编译器的方法,且非常简单。递归下降法对语言所用的文法有一些限制,但递归下降是现阶段主流的语法分析方法,因为它可以由开发人员高度控制,在提供错误信息方面也很有优势。就连微软C#官方的编译器也是手写而成的递归下降语法分析器。

使用递归下降法编写语法分析器无需任何类库,编写简单的分析器时甚至连前面学习的词法分析库都无需使用。我们来看一个例子:现在有一种表示二叉树的字符串表达式,它的文法是:

N → a ( N, N )
N → ε

其中终结符a表示任意一个英文字母,ε表示空。这个文法的含义是,二叉树的节点要么是空,要么是一个字母开头,并带有一对括号,括号中逗号左边是这个节点的左儿子,逗号右边是这个节点的右儿子。例如字符串 A(B(,C(,)),D(,))就表示这样一棵二叉树:

注意

文法规定节点即使没有儿子(儿子是空),括号和逗号也是不可省略的,所以只有一个节点的话也要写成A(,)。现在我们要写一个解析器,输入这种字符串,然后在内存中建立起这棵二叉树。

其中内存中的二叉树是用下面这样的类来表示的:

class Node
{
 public Node LeftChild { get; private set; }
 public Node RightChild { get; private set; }
 public char Label { get; private set; }

 public Node(char label, Node left, Node right)
 {
 Label = label;
 LeftChild = left;
 RightChild = right;
 }
}

这是一道微软面试题,曾经难倒了不少参加面试的候选人。不知在座各位是否对写出这段程序有信心呢?不少参选者想到了要用栈,或者用递归,去寻找逗号的位置将字符串拆解开来等等方法。但是若是使用递归下降法,这个程序写起来非常容易。

一般步骤:

使用一个索引来记录当前扫描的位置。通常将它做成一个整数字段。

为每个非终结符编写一个方法。

如果一个非终结符有超过一个的产生式,则在这个方法中对采用哪个产生式进行分支预测

处理单一产生式时,遇到正确终结符则将第一步创建的扫描索引位置向前移动;如遇到非终结符则调用第二步中创建的相应方法。

如果需要产生解析的结果(比如本例中的二叉树),在方法返回之前将它构造出来。

我们马上来试验一下。首先建立一个类,然后存放一个索引变量来保存当前扫描位置。然后要为每一个非终结符创建一个方法,我们的文法中只有一个非终结符N,所以只需创建一个方法:

class BinaryTreeParser
{
 private string m_inputString;
 private int m_index;

 //初始化输入字符串和索引的构造函数,略

 Node ParseNode()
 {
 
 }
}

回到刚才的产生式,我们看到非终结符N有两个产生式,所以在ParseNode方法的一开始我们必须做出分支预测。分支预测的方法是超前查看(look ahead)。就是说我们先“偷窥”当前位置前方的字符,然后判断应该用哪个产生式继续分析。非终结符N的两个产生式其中一个会产生a(N, N)这个的结构,而另一个则直接产生空字符串。那现在知道,起码有一种可能就是会遇到一个字母,这时候应该采用N → a(N, N)这个产生式继续分析。那么什么时候应该采用N → ε进行分析呢?我们观察产生式右侧所有出现N的地方,倘若N是空字符串,那么N后面的字符就会直接出现,也就是逗号和右括号。于是这就是我们的分支预测:

如果超前查看遇到英文字母,预测分支N → a(N, N)

如果超前查看遇到逗号、右括号预测分支N → ε

转化成代码就是这样:

Node ParseNode()
{
 int lookAheadIndex = m_index;

 char lookAheadChar = m_inputString[lookAheadIndex];

 if (Char.IsLetter(lookAheadChar))
 {
 //采用N → a(N, N)继续分析
 }
 else if (lookAheadChar == ',' || lookAheadChar == ')' )
 {
 //采用N → ε继续分析
 }
 else
 {
 throw new Exception("语法错误");
 }
}

接下来我们分别来看两个分支怎么处理。先来看N → ε,这种情况下非终结符是个空字符串,所以我们不需要移动当前索引,直接返回null表示空节点。再来看N → a(N, N) 分支,倘若输入的字符串没有任何语法错误,那就应该依次遇到字母、左括号、N、逗号、N右括号。根据上面的规则,凡是遇到终结符,就移动当前索引,直接向前扫描;而要是遇到非终结符,就递归调用相应节点的方法。所以(不考虑语法错误)的完整方法代码如下:

Node ParseNode()
{
 int lookAheadIndex = m_index;

 char lookAheadChar = m_inputString[lookAheadIndex];

 if (Char.IsLetter(lookAheadChar))
 {
 //采用N → a(N, N)继续分析
 char label = m_inputString[m_index++]; //解析字母
 m_index++; //解析左括号,因为不需要使用它的值,所以直接跳过

 Node left = ParseNode(); //非终结符N,递归调用

 m_index++; //解析逗号,跳过

 Node right = ParseNode(); //非终结符N,递归调用

 m_index++; //解析右括号,跳过

 return new Node(label, left, right);
 }
 else if (lookAheadChar == ',' || lookAheadChar == ')')
 {
 //采用N → ε继续分析
 //无需消耗输入字符,直接返回null
 return null;
 }
 else
 {
 throw new Exception("语法错误");
 }
}

因为存在语法约束,所以一旦我们完成了分支预测,就能清楚地知道下一个字符或非终结符一定是什么,无需再进行任何判断(除非要进行语法错误检查)。因此根本就不需要寻找逗号在什么位置,我们解析到逗号时,逗号一定就在那,这种感觉是不是很棒?只需要寥寥几行代码就已经写出了一个完整的Parser。大家感兴趣可以继续补全一些辅助代码,然后用真正的字符串输入试验一下,是否工作正常。前面假设输入字符串的语法是正确的,但真实世界的程序总会写错,所以编译器需要能够帮助检查语法错误。在上述程序中加入语法错误检查非常容易,只要验证每个位置的字符,是否真的等于产生式中规定的终结符就可以了。这就留给大家做个练习吧。

上面我们采用的分支预测法是“人肉观察法”,编译原理书里一般都有一些计算FIRST集合或FOLLOW集合的算法,可以算出一个产生式可能开头的字符,这样就可以用自动的方法写出分支预测,从而实现递归下降语法分析器的自动化生成。ANTLR就是用这种原理实现的一个著名工具。有兴趣的同学可以去看编译原理书。其实我觉得“人肉观察法”在实践中并不困难,因为编程语言的文法都特别有规律,而且我们天天用编程语言写代码,都很有经验了。

下面我们要研究一下递归下降法对文法有什么限制。首先,我们必须要通过超前查看进行分支预测。支持递归下降的文法,必须能通过从左往右超前查看k个字符决定采用哪一个产生式。我们把这样的文法称作LL(k)文法。这个名字中第一个L表示从左往右扫描字符串,这一点可以从我们的index变量从0开始递增的特性看出来;而第二个L表示最左推导,想必大家还记得上一篇介绍的最左推导的例子。大家可以用调试器跟踪一遍递归下降语法分析器的分析过程,就能很容易地感受到它的确是最左推导的(总是先展开当前句型最左边的非终结符)。最后括号中的k表示需要超前查看k个字符。如果在每个非终结符的解析方法开头超前查看k个字符不能决定采用哪个产生式,那这个文法就不能用递归下降的方法来解析。比如下面的文法:

F → id
F → ( E )
E → F * F
E → F / F

当我们编写非终结符E的解析方法时,需要在两个E产生式中进行分支预测。然而两个E产生式都以F开头,而且F本身又可能是任意长的表达式,无论超前查看多少字符,都无法判定到底应该用乘号的产生式还是除号的产生式。遇到这种情况,我们可以用提取左公因式的方法,将它转化为LL(k)的文法:

F → id
F → ( E )
G → * F
G → / F
E → FG

我们将一个左公因式F提取出来,然后将剩下的部分做成一个新的产生式G。在解析G的时候,很容易进行分支预测。而解析E的时候则无需再进行分支预测了。在实践中,提取左公因式不仅可以将文法转化为LL(k)型,还能有助于减少重复的解析,提高性能。

下面我们来看LL(k)文法的第二个重要的限制——不支持左递归。所谓左递归,就是产生式产生的第一个符号有可能是该产生式本身的非终结符。下面的文法是一个直截了当的左递归例子:

F → id
E → E + F
E → F

这个表达式类似于我们上篇末尾得到的无歧义二元运算符的文法。但这个文法存在左递归:E产生的第一个符号就是E本身。我们想像一下,如果在编写E的递归下降解析函数时,直接在函数的开头递归调用自己,输入字符串完全没有消耗,这种递归调用就会变成一种死循环。所以,左递归是必须要消除的文法结构。解决的方法通常是将左递归转化为等价的右递归形式:

F → id
E → FG
G → + FG
G → ε

大家应该牢牢记住这个例子,这不仅仅是个例子,更是解除大部分左递归的万能公式!我们将要在编写miniSharp语法分析器的时候一次又一次地用到这种变换。

下载地址

热门软件

Top